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Abstract

The tonal noise radiated by a two-dimensional cavity submerged in a low-speed turbulent flow has been
investigated computationally using a hybrid scheme that couples numerical flow computations with an
implementation of the Ffowcs Williams–Hawkings equation. The turbulent near field is computed by
solving the short-time-averaged, thin-layer approximation of the Navier–Stokes equations, with turbulence
modelled by the Wilcox k–o model. Second order spatial and temporal discretization schemes with fine
grids in the immediate region of the cavity and a small time step were used to capture the unsteady flow
physics. Along all external boundaries, a buffer zone is implemented to absorb propagating disturbances
and prevent spurious numerical reflections. Comparisons with experimental data demonstrate good
agreement in both the frequency and amplitude of the oscillations within the cavity. The unsteady
characteristics of the cavity flow are discussed, together with the mechanisms for cavity noise generation.
The influence of freestream flow velocity and boundary layer thickness on the frequency and amplitude of
the oscillations within the cavity and the nature of the noise radiated to the far field are also investigated.
Results indicate that both the frequency and amplitude of oscillation are sensitively dependent on the
characteristics of the shear layer spanning the mouth of the cavity.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cavities or surface cutouts submerged in low-speed turbulent flows are a common source of
noise and increased drag in many transport systems. The understanding of cavity flow phenomena
is therefore of significant importance, and has received considerable attention ever since the early
work of Krishnamurty [1] and Roshko [2]. The bulk of this work has been experimental, as until
recently the inherent complexity of such flows has precluded their accurate numerical modelling.
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Theoretical models, however, have been developed, but are largely semi-empirical and sufficient
only for the prediction of the possible resonant frequencies. For a given set of conditions none of
these are capable of predicting which modes will be present, the amplitude of these modes, or any
possible non-linear interactions between modes. Therefore, alongside experimental methods,
numerical simulations currently provide the only means of determining the exact nature of a
particular cavity flow field for a given set of conditions.
Although the majority of interest in the cavity flow problem has traditionally come from the

aerospace industry, cavity noise can also be a major source of automobile aerodynamic noise due
to the flow over cavities such as open windows or door seals. The elimination of such noise can
offer a commercial advantage and is becoming of increasing strategic importance. Vehicle noise
has received considerable attention over recent years, with a significant amount of research being
carried out by car manufacturers and other organizations. Much of this work has focused on
reducing structure-borne noise, such as vibration from the engine, gear train or the interaction
between tyres and the road [3]. This has resulted in improved interior car sound quality and a
reduction in the radiated noise levels. Such achievements in the reduction of structure-borne noise
have naturally led to an increased awareness of other sources of noise, such as aerodynamic noise.
This is now a significant contributor to interior noise levels at high driving speeds. It stems from a
variety of sources including the shedding of vortices from antennae, wings and other protrusions,
as well as from turbulent boundary layers, turbulent flow separation and natural turbulence in the
oncoming air flow [4].
In this work the noise generation mechanisms due to turbulent flow over a generic car door

cavity are investigated computationally. A recent review of noise prediction using computational
fluid dynamics (CFD) highlighted the feasibility of simulating aerodynamic noise generated by
two-dimensional flow using conventional CFD [5]. Providing sufficient care is taken and
validation with experimental work is performed, numerical simulations can provide a wealth of
information allowing the modes of oscillation and noise generation mechanisms to be identified
and understood.

2. Numerical approach

In theory, the sound generated by turbulent fluid motion may be computed directly by solving
the compressible, unsteady Navier–Stokes equations. Unfortunately, even at moderate Reynolds
numbers this is enormously expensive. Therefore, to study problems at higher Reynolds numbers
it is necessary to use much less computationally intensive approaches, such as large eddy
simulation (LES) or unsteady Reynolds-averaged Navier–Stokes (URANS) modelling, in which
some form of semi-emprical model is employed to represent the influence of the finer scales of
turbulence. However, even with the adoption of such approaches, the direct evaluation of the
noise heard by an observer in the far field is still prohibitively expensive. To overcome this
difficulty, a hybrid approach is adopted in this work. In the immediate region of the cavity and
over a portion of the acoustic near field a compressible URANS solver is employed to model the
flow physics. The farfield characteristics of the radiated sound field are evaluated using an integral
formulation of the acoustic analogy, with the source data provided by the near field numerical
simulations.
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2.1. Near field

The CFD code CFL3D [6] is employed to model the near field unsteady cavity flow physics.
Although CFL3D has not been specifically designed for aeroacoustic problems, it has been shown
to be able to resolve flow structures responsible for the noise generation process when suitably fine
mesh and time steps are used [7]. CFL3D solves the compressible, three-dimensional, time-
dependent, thin-layer Reynolds averaged Navier–Stokes equations on structured grids using a
finite volume formulation. For the work undertaken here CFL3D is configured in a 2-D mode.
The governing equations written in generalized co-ordinates and conservative form are:
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The contravariant velocities are given by

U ¼ xxu þ xyv;

V ¼ Zxu þ Zyv: ð5Þ

The vector Q represents density, momentum and total energy per unit volume. The pressure p is
related to the conservative flow variables by the equation of state for an ideal gas

p ¼ ðg� 1Þ½e � rðu2 þ v2Þ=2�: ð6Þ

The equations are non-dimensionalized with respect to freestream density pN, sound speed cN,
and reference length A, where A equals the length of the cavity opening in the streamwise
direction (Fig. 1). The shear stress and heat flux terms are defined in tensor notation (summation
convention implied) as
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where MN is the freestream Mach number, Re is the Reynolds number, m is the molecular
viscosity, mT is the turbulent eddy-viscosity (see below), and Pr and PrT are the laminar and
turbulent Prandtl numbers, respectively. In contrast with typical applications of the thin layer
approximation, derivatives are retained in both co-ordinate directions in the shear and heat flux
terms. Only those terms originating from cross derivatives are neglected.
The equations are solved implicitly in time using a three-factor approximate factorization

scheme. To recover second order temporal accuracy it is necessary to employ a sub-iteration
strategy. The t–TS [8] option is used here with 10 sub-iterations per physical time step. Fluxes at
the cell faces are calculated by the flux-difference splitting method of Roe. Second order accurate
upwind-biased spatial differencing is used for the inviscid terms, whilst the viscous derivatives are
computed using second order central differencing.
The effects of turbulence on the short-time-averaged flow quantities are simulated through the

modelling of the Reynolds stresses which appear in the governing equations as a result of the
short-time-averaging procedure. In this work the two-equation Wilcox k–omodel [9] is employed.
As with virtually all other two-equation turbulence models this model is based on the Boussinesq
eddy-viscosity approximation, and seeks to represent the Reynolds stresses as the product of an
eddy-viscosity and the mean strain rate. A detailed description of the Wilcox k–o model, along
with many other turbulence modelling strategies may be found in Ref. [9]. Note that such
turbulence models do not describe turbulent fluctuations in detail but provide only the average
effects of fluctuations on the short-time averaged flow quantities through the modelling of the
Reynolds stress terms.
A particularly important aspect of modelling aeroacoustic phenomena is the need to use non-

reflecting boundary conditions along all external boundaries to ensure spurious numerical
reflections do not contaminate the solution domain. Many forms of non-reflecting boundary
conditions have been proposed, and for problems described in terms of equations linearized about
a uniform mean flow, boundary conditions to arbitrary high order of accuracy may be derived
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[10]. For non-linear problems the accuracy of such boundary conditions is significantly limited.
To overcome this difficulty, the concept of a buffer zone which surrounds the external boundaries
of the computational domain has been developed. The nature of such buffer zones vary
considerably, and include combinations of grid stretching and filtering, as well as the addition of
artificial convection and damping terms to the governing equations. The buffer zone approach is
normally combined with traditional stable, low order accurate boundary conditions.
The approach adopted in this study follows the method proposed by Freund [11], in which an

artificial damping term is used to drive the solution to a quiescent target state within the buffer
region. The artificial damping is added explicitly at the end of every time step in the form of a
correction,

Qnþ1 ¼ Qnþ1 � sðQnþ1 �QTARGET Þ; ð9Þ

where Qnþ1 is the solution vector obtained at the end of a time step through the solution of the
governing equations. The damping coefficient, s, varies smoothly from zero at the interface
between the buffer zone and the central computational domain to a finite value at the boundary.
This is of the form

sðxÞ ¼ e
L � x

L

� �b

; ð10Þ

where L is the width of the buffer zone, x is the distance from the outer boundary of the buffer
zone and e and b are coefficients which determine the exact nature of the damping coefficient. For
the work presented here e=1 and the exponent b=3. The target data, QTARGET, represents the
local time-averaged flow field in the buffer zone regions. These values are set by computing the
steady flow over a flat plate with the same inflow conditions as used in the cavity simulations.
The buffer zone methodology is used in conjunction with the following boundary conditions.

To ensure the appropriate upstream turbulent boundary layer profile, the three velocity
components u; v and w together with the turbulence quantities, k and o are prescribed along the
inflow boundary of the domain. In accordance with the two-dimensional nature of the simulations
the spanwise component of velocity w, is uniformly set to zero. The remaining values are
determined using Wilcox’s EDDYBL [9] boundary layer program, together with a knowledge of
the boundary layer profile just upstream of the cavity. Downstream of the cavity, at the outflow
boundary, zeroth order extrapolation is used. Along the upper computational boundary,
characteristic 1-D Riemann invariants are solved. All solid walls are modelled with an adiabatic,
no-slip boundary condition.
The particular cavity geometry investigated is depicted in Fig. 1. The geometry is representative

of an automobile door cavity and comprises a simple rectangular cavity with a small lip or
overhang emanating from the upstream face. The basic rectangular structure of the geometry
greatly simplifies grid generation and facilitates the use of CFL3D’s multi-blocking capacity. The
actual computational domain used in the numerical simulations is shown schematically in Fig. 2.
To ensure adequate resolution of the upstream turbulent boundary layer and the shear layer
developing over the cavity, grid stretching is used to cluster cells along all solid walls and in the
region of the shear layer. Along all solid walls y+=O (1). Away from the immediate region of
the cavity the distribution of the mesh is primarily governed by the need to adequately resolve the
acoustic waves.
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The relatively poor resolution characteristics (by which we mean the accuracy with which the
scheme represents the exact result over the full range of length scales realizable on a given mesh)
of the second order MUSCL scheme employed in CFL3D dictates that a considerable number of
cells be employed per wavelength to ensure the accurate propagation of the acoustic waves [12].
Practically, this limits the extent of the computational domain to, at most, a few wavelengths from
the source region. The grid contains a total of approximately 130,000 cells distributed between the
six blocks comprising the computational domain, as indicated in Fig. 2. Both the grid and time
step used have been determined by grid and time step convergence studies, reported earlier by the
authors [13].
All simulations begin with the entire flow-field set to freestream values. CFL3D is then initially

run in a ‘steady state’ or non-time accurate mode to obtain a more realistic flow field from which
to start time accurate calculations. No form of perturbation or artificial disturbance is imposed on
the flow.

2.2. Far field

There are several ways in which the farfield characteristics of the sound field may be
determined. Conceptually, the most obvious of these is to extend the computational domain to the
region of interest and solve the Navier–Stokes equations through out the entire domain. This is, of
course, computationally very expensive, and furthermore largely unnecessary, as away from the
source region the flow variables generally satisfy a reduced form of the governing equations. A
more feasible alternative, therefore, is to patch the source region to a secondary region in which
one solves only a simplified version of the governing equations [14]. As this approach still requires
that the propagation of the disturbances be computed directly, it is important to use numerical
schemes with low dispersion and dissipative error characteristics [15], although, even with the
adoption of such schemes, it is still expensive and can be uneconomical to compute the
propagation of the disturbances to the true far field, especially when information is required only
at a relatively limited number of observer points for evaluating the directivity. An alternative to
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these more direct approaches is to employ some form of surface integral method to propagate the
pressure disturbances to the far field, such as the Kirchhoff method or the acoustic analogy. In the
present study the latter of these approaches is used as it affords a greater degree of flexibility in
positioning the integration surface [16].
The particular form of the acoustic analogy used is that due to Ffowcs Williams and Hawkings

[17]. This is the most general form of Lighthill’s acoustic analogy and is appropriate for
computing the acoustic field when solid boundaries play a direct role in the generation of sound.
The FW-H equation may be written in differential form as
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where &2 ¼ ð1=c2oÞ@
2=@t2 � @2=@x2

i is the wave operator, co is the ambient speed of sound, t is the
observer time, p0 is the acoustic pressure, ro is the free-stream density, H=H(f) is the Heaviside
function, where f=0 defines the integration surface. The terms on the right-hand side of this
equation are interpreted as source terms. The first of these is the Lighthill stress tensor Tij and
represents the generation of sound by the volume sources. The second term represents the sound
generated due to the exertion of unsteady forces by the boundaries on the fluid, and the last term
represents the sound generated due to the volume displacement effects of the surface. These last
two terms Ui and Lij are defined as
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and

Lij ¼ P0
ij þ ruiðuj � vjÞ; ð13Þ

respectively. Here r is the total density, rui is the momentum in the i direction, vi is the velocity of
the integration surface f=0, and P0

ij=(p–po)dij�sij is the compressive stress tensor.
By using a standard Green function approach, Eq. (11) can be written as an integral equation,
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Eq. (14) is not easily employed in computational simulations in its present form, due to the
derivatives being taken at the observer time and location. To cast this equation in a more
convenient form we follow the approach of Farassat and Succi [18] and the manipulations therein
to express the result in terms of source time and location. The resulting form of the equation is
known as integral solution 1A, and takes the form

p0ðx; tÞ � p0
T ðx; tÞ þ p0

Lðx; tÞ þ p0
Qðx; tÞ; ð15Þ
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and p0Q(x, t) the term accounting for the quadrupole sources outside the integration surface, may
be computed either directly from the volume integral term in Eq. (14) or from any of the
appropriate methods available in the literature [19]. However, in the current study this term is
neglected. Other than this omission, Eq. (15) is exact and therefore valid in both the near and far
field.
In the above equations a dot indicates a time derivative. Mi is the Mach number of the surface

in the ith co-ordinate direction, r is the distance from a source point on the surface to the observer,
and the subscript r indicates the projection of a vector quantity in the radiation direction. The
subscript Ret indicates that the integrals are evaluated at each source’s retarded time (emission
time), given by t ¼ t2jx2yj=c0; where y is the source location, and t and x are the observer time
and position, respectively.
The source terms in the Eqs. (16) and (17) are evaluated using time accurate aerodynamic flow-

field data obtained from the CFD calculations. The sound sources are thus given directly in terms
of the calculated time-dependent flow field.

3. Results and discussion

Results from numerical simulations of turbulent two-dimensional cavity flows under a range of
flow conditions are presented in this Section. The cavity geometry used is that specified as a
benchmark problem at the Third Computational Aeroacoustics Workshop [19]. The geometry is
representative of a car door cavity and comprises a simple rectangular cavity with a small lip or
overhang emanating from the upstream face, as shown schematically in Fig. 1. The neck of the
cavity is 8.76mm wide. The width of the base of the cavity is 15.9mm and lies 24.7mm below the
cavity lip, which is itself 3.3mm thick. The length of the cavity in the third dimension is assumed
sufficiently large to ensure three-dimensional effects due to cavity ends may be neglected. The
freestreamMach number is M=0.147, and the Reynolds number based on the length of the cavity
opening is Re=29,986. For these freestream flow conditions the incoming boundary layer profile
is described by the one-seventh power law, with a boundary layer thickness of 18.44mm at the
mouth of the cavity.
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3.1. Cavity flow field

The nature of the flow in the vicinity of the cavity opening may be understood by examining
the sequence of instantaneous vorticity contours shown in Fig. 3. These images show the flow in
the immediate vicinity of the cavity opening. The images correspond to different times in the
oscillation cycle, and highlight the unsteady nature of the shear layer forming as the boundary
layer seperates off the lip of the cavity. The oscillations develop as a consequence of shear layer
instabilities which amplify small pressure disturbances in a closed feedback loop. The convective
growth of these instabilities results in the unsteady impingement of the shear layer on the
downstream face of the cavity. As a consequence of this unsteady shear layer behaviour,
the pressure in the vicinity of the trailing edge fluctuates in a quasi-periodic manner. This in turn
induces an unsteady mass flux in the neck of the cavity.
The growth of the disturbances in the shear layer and the flux of mass into the cavity are shown

in the space–time plots of Fig. 4. The first of these, Fig. 4a, shows the flux of mass across the
opening into the neck of the cavity. The darker regions indicate a flux of mass into the cavity,
whereas the lighter regions represent the expulsion of mass from the cavity. Neglecting the initial
starting transients, the periodic nature of the disturbances and their growth with distance
downstream of the cavity leading edge is clear. Furthermore, it may be seen that the disturbances
in the shear layer follow a linear path in space–time. This implies that the disturbances travel at
constant speed across the entire cavity opening. By inspection, the convective velocity of the
disturbances normalized by the freestream flow velocity is found to be Uc=0.34. This figure is
towards the lower end of the values reported in the literature on cavity flows [20], a fact that may
be accounted for by the unusually thick boundary layer relative to the dimensions of the cavity.
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The second of the space–time plots, Fig. 4b, shows the flux of mass from the neck of the cavity
to the main body. This shows the inflow of mass is concentrated towards the rear face of the
cavity, whereas mass expulsion occurs more evenly over the remainder of the cavity opening.
Inspection of the time history of the surface pressures within the main body, however, shows that
this concentrated injection of mass gives rise to an essentially uniform change in pressure and
density within the cavity.
The cycle of oscillation can be described as follows. As the pressure at the trailing edge increases

due to the impingement of the shear layer, a flux of mass into the main body of the cavity results.
During this phase the density and pressure increase within the main body of the cavity. As the
shear layer continues to evolve with time the pressure in the region of the trailing edge reduces as
the shear layer is deflected over the corner. As this occurs mass flows from the cavity and the
density and pressure reduce. The feedback loop is closed, as the density and pressure
perturbations radiate together as sound from the cavity, perturbing the shear layer. As in the
present case, when the frequency of the disturbance is suitably in phase with the developing shear
layer, resonance occurs.
The flow within the cavity itself is characterized by a large region of slow recirculating flow,

accompanied by regions of secondary recirculation in the corners and at the base of the cavity. As
a consequence of this recirculating flow, small-scale vortex shedding from the lower edge of the
cavity lip may be observed in the sequence of vorticity contours in Fig. 3.
The favourable coupling between the unsteady shear layer and the acoustic feedback from the

cavity causes intense pressure fluctuations within the cavity. Under these resonant conditions
sound pressure levels (SPL) of over 130 dB have been observed experimentally. The power
spectrum of the computed pressure fluctuations along the upstream wall of the cavity (determined
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by reconstruction of the cell-centre data) is shown in Fig. 5, along with the experimental data of
Henderson [19]. The computational results show that a strong tonal component at just over
1800Hz dominates the acoustic spectrum, which is in good agreement with the experimental data.
The predicted tonal amplitude also closely matches that reported by Henderson, lying within 3 dB
of the amplitude measured experimentally.
The nature of the oscillations observed is characteristic of the classic Helmholtz resonator. In

order to test the hypothesis that the cavity geometry was indeed acting as a Helmholtz resonator,
the following basic Helmholtz theory was used to estimate the frequency of oscillation:

f ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

d 0V

� �s
; ð18Þ

where d0=d+2de is the effective length of the fluid in the neck, including end corrections de on
either side. S is the opening area, V is the volume of the cavity and c is the speed of sound. The
effective length may be estimated in a number of ways, but here Rayleigh’s method based on a
piston in a baffle [21] is adopted. This is a simple iterative method, and provides an estimate of the
resonant frequency to be fE1850Hz, which is in good agreement with the numerical and
experimental values. To further assess the accuracy of this basic theory and the validity of the
description of the system as a Helmholtz resonator, a number of additional simulations were
performed under the same flow conditions, but with modifications to the basic geometry. These
results are summarized in Table 1.
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Fig. 5. Cavity wall pressure spectrum:——, experimental and—– –, computational.

Table 1

Influence of geometry on frequency of resonance

Cavity depth (mm) 24.70 30.00 18.00

Computed frequency (Hz) 1820 1740 2000

Estimated frequency (Hz) 1850 1650 2230
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Clearly the general trends are predicted, which would indicate the essential mode of oscillation
is that of a Helmholtz resonator; however, the accuracy of the estimated frequency varies
considerably and demonstrates the estimate given for the base line geometry was quite fortuitous.
This basic theory can therefore be used to provide a guide to the effects of geometry change, but
to determine the precise values it is necessary to employ more sophisticated modelling techniques.
The sound field in the immediate region of the cavity has been computed directly in the

simulations by extending the computational domain a distance of approximately 2l from the
mouth of the cavity, were l is the wavelength of the fundamental frequency. A snapshot of
the sound field in this region is shown in Fig. 6. The convection of the sound field by the mean
flow is apparent. On closer inspection the Doppler shift induced by the low-speed mean flow may
also be discerned through examination of the wavelengths of the disturbances propagating away
from the cavity region.

3.2. Acoustic far field

The farfield characteristics of the radiated sound field are evaluated using the Ffowcs Williams–
Hawkings integral equation. The application of this method requires the definition of an
integration surface. Numerically, the size and position of this surface can have an influence on the
accuracy of the predictions. In the current study the surface runs parallel with the outer wall of the
cavity, and extends a finite distance in the spanwise direction. To provide data for the entire
surface the two-dimensional CFD data is replicated in the spanwise direction. In doing so the flow
is assumed to perfectly coherent over this length. It has been demonstrated by Brentner et al. [22]
that when the length over which the surface extends corresponds approximately to the length over
which the flow is coherent, accurate estimates of the sound pressure levels may be obtained.
Unfortunately, this information is not available for the particular geometry and set of flow
conditions considered here. However, as in the current computational work the extent of the
computational domain is such that a portion of the acoustic near field is computed directly, the
replication length may be established by using the FW-H code to evaluate the sound field in this
same region. In this way the replication length may be calibrated so that the two solutions match
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well. Using this approach a replication length of approximately 18A (where A is the size of the
cavity opening) was found to be most accurate.
The length of the integration surface in the streamwise direction is also an important factor.

Ideally, the surface would be of infinite extent, however, in practice the surface must be truncated.
In the current study the streamwise extent of the surface is limited by the size of the computational
domain. It is therefore important to assess the convergence of the integrals over the limited surface
that may be used. The computed pressure history for an observer located 2m directly above the
mouth of the cavity is shown in Fig. 7 for a range of surfaces of varying streamwise length. As the
length of the integration surface is increased the difference between successive surfaces decreases,
with the final two pressure traces being virtually indistinguishable at this scale.
The farfield directivity of the radiated noise is evaluated by computing the pressure signals at

several observers points, located on an arc of radius 2m, focused about the centre of the cavity
opening. The computed directivity of dominant fundamental frequency is shown in Fig. 8. The
sound is found to radiate almost uniformly in all directions, although the radiation is observed to
be slightly stronger in the upstream direction. The amplitude in the upstream arc is approximately
0.5 dB greater than in the downstream arc, with an amplitude of 93 dB.
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Fig. 7. Pressure time histories for different integration surfaces:— — —, IS length=90A; — — —, IS length = 85A;

—–, IS length=80A; and — 
 — 
 —, IS length=70A.

Fig. 8. Farfield directivity pattern for dominant frequency: — —, UN=50m/s, d=18.44mm; — — —, UN=55m/s,

d=18.12mm; — 
— 
 –, UN=45m/s, d=18.67mm; —– UN=50m/s, d=7.23mm; and — 
 
— 
 
— 
 
 –,

UN=50m/s, d=3.93mm.
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3.3. Effects of freestream velocity

In order to assess the influence of freestream flow velocity on the nature of the cavity
oscillations and the radiated noise, additional simulations have been performed. Two freestream
flow speeds have been considered, UN=45m/s and UN=55m/s. The inflow conditions for these
cases were chosen to ensure the thickness of the boundary layers at the lip of the cavity were close
to the original case, in which d E 19mm.
At these flow speeds the mechanism of oscillation is found to be unchanged. However, the

frequency and amplitude of the oscillations are different in both cases from the those observed at
50m/s. This is most clearly seen in the spectra of the fluctuating wall pressure measured on the
upstream face of the cavity (Fig. 9). When examining these spectra it should be noted we are
concerned only with the tonal components, and the broadband features of the signals are beyond
the scope of the current approach. Examination of these figures show that both the amplitude and
frequency increase with flow speed. At a flow speed of 45m/s the fundamental frequency of
oscillation is approximately 1700Hz and the amplitude of the oscillation is slightly below 120 dB.
As the flow speed is increased by just 10–55m/s, the amplitude of oscillation increases
substantially to over 139 dB, and the frequency increases to 1960Hz.
The farfield characteristics of the radiated noise are shown in Fig. 8. Clearly at the higher speed

of 55m/s, significantly more noise is radiated to the far field from the cavity. The radiated noise is
also found to be more directional, with the amplitude in the upstream arc almost 2 dB larger than
that downstream. This trend is consistent with basic theory for point sources in motion, and
would therefore suggest the enhanced directivity observed at the higher flow speed is principally a
result of the increased source velocity. The largest farfield amplitude is found to occur at
approximately 1351, where the angle is measured counter clockwise from the downstream edge.
However, the amplitude at this angle is only marginally higher than those surrounding it. At the
lower speed, the level of radiated noise falls significantly below the levels observed at the higher
speeds, to 80 dB in the downstream direction and just over 81 dB in the upstream direction.
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Fig. 9. Influence of freestream flow speed on cavity wall pressure: ———, UN=55m/s; — — — — UN=50m/s; and

—–, UN=45m/s.
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3.4. Effects of boundary layer thickness

In order to study the effects of incoming boundary layer thickness on the nature of the induced
cavity oscillations, two further simulations were performed. In both cases the basic flow
parameters remain unchanged, with the same Reynolds number and Mach number. The thinner
boundary layers are achieved by specifying a freestream condition on the inflow boundary.
Boundary layer thickness is then determined by the extent of the solid wall upstream of the cavity.
In the case of the thinnest boundary layer, the solid wall does not extend the entire way to the
inflow boundary. In this case a symmetry condition is employed over the remaining region. The
integral properties of the boundary layers 5mm upstream of the cavity leading edge are given in
Table 2.
Examination of the instantaneous vorticity contours for the two thinner boundary layer cases,

reveals that the flow fields exhibit the same characteristics as the thicker boundary layer flow, with
the processes of shear layer impingement and unsteady mass flux dominating the flow in the
mouth of the cavity. However, when the fluctuating cavity wall pressures are plotted and
compared it is clear that the nature of the upstream boundary layer does indeed have a significant
effect on the both the amplitude and frequency of the cavity pressure oscillations. This is shown in
the pressure time history plots in Fig. 10. It is found that as boundary layer thickness increases,
the tonal frequency decreases from a value of approximately 2070Hz when d=3.93mm to a value
of 1820Hz when d=18.44mm. The amplitude, however, is found to be largest at the intermediate
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Table 2

Cavity flow boundary layer data

UN (m/s) d (mm) d* (mm) y (mm) H

50 18.44 2.15 1.71 1.26

50 7.23 1.00 0.77 1.30

50 3.93 0.54 0.40 1.35

Fig. 10. Cavity wall perturbation pressure time histories: ———, d=18.44mm; — — — —, d=7.23mm; and —–,

d=3.93mm.
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boundary layer thickness. This suggests that the stability characteristics of the mean flow profile
play an important role in determining the amplitude and also the frequency of the oscillations.
Examination of the shear layer development across the mouth of the cavity reveals that the
disturbances convect at slightly higher speeds in the thinner boundary layers, which accounts for
the increases in frequency of oscillation with reduced boundary layer thickness. The growth of the
disturbances, however, is found to vary with boundary layer thickness. In the case of the thinnest
boundary layer the least growth is observed. This has the result of weakening the oscillatory
motion of the shear layer in the region of the cavity trailing edge, and thus the strength of the
forcing which drives the cavity resonance.
The impact of these factors on the characteristics of the noise radiated to the far field is shown

in Fig. 8. Clearly, the trends in amplitude follow those observed in the oscillations within the
cavity. The boundary layer of thickness d=3.93mm exhibits the weakest radiation of the three
cases, with an amplitude of approximately 89 dB in the upstream direction and 88 dB in the
downstream direction. The strongest radiation is observed for d=7.23mm case. Here the
amplitude of the radiation in the upstream direction is almost 94 dB and that in the downstream
arc approximately 93 dB. In both cases the directivity is similar to that observed in all cases, with
marginally stronger radiation in the upstream direction.

4. Conclusions

A hybrid approach combining a compressible unsteady RANS flow solver with an integral
formulation of the acoustic analogy has been employed to investigate the unsteady flow and
resulting acoustic radiation from a cavity geometry submerged in a low-speed turbulent flow.
Through validation against experimental data this approach has been shown capable of capturing
the tonal components of the noise spectrum.
For the set of flow conditions considered, the flow in the mouth of the cavity is found to be

dominated by the time-dependent behaviour of the shear layer, and the unsteady flux of mass into
and out of the main body of the cavity. The flow within the cavity itself is still, however, largely
quiescent and characterized by a large region of slowly recirculating flow. As a consequence of this
motion, small-scale vortex shedding off the lower edge of the cavity lip is observed. The unsteady
flux of mass in the neck of the cavity causes the pressure and density to fluctuate within the cavity
body. At the flow speeds considered in this work a favourable coupling develops between the
undulating shear layer and the cavity oscillations, such that a condition of resonance occurs.
Under these conditions, large-amplitude fluctuations in pressure and density are observed within
the cavity, which give rise to significant levels of noise radiation.
The influence of the freestream flow speed and the nature of the upstream boundary layer is

found to be varied. Increasing freestream flow speed significantly increases the amplitude of the
noise radiated, and to a lesser degree the frequency of oscillation. The directivity of the radiated
sound field is also found to increase marginally with flow speed, in a manner that leads to an
increase in the noise radiated in the upstream direction. The properties of the upstream boundary
layer are also found to be important in determining both the amplitude and frequency of the
oscillations. For the present set of flow conditions it is found that as boundary layer thickness is
reduced, the frequency of oscillation increases. This is believed to be due to the higher convective
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speeds of the disturbances in the shear layer observed in the thinner boundary layers. The
amplitude of oscillation is found to initially increase with boundary layer thickness and decrease
as the value is further increased. All of these factors point to the sensitive dependence of the
oscillations on the stability characteristics of the shear layer spanning the mouth of the cavity.
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